韩国三级一区-韩国三级香港三级日本三级la-韩国三级香港三级日本三级-韩国三级视频网站-日韩欧美一及在线播放-日韩欧美一二三区

充電鋰電池正極材料生產技術的發展

鉅大鋰電  |  點擊量:0  |  2023年05月16日  

本文對鋰離子電池正極材料生產制備技術的發展歷史進行了回顧,對鋰離子電池正極材料的發展方向進行了分析。上世紀末,從鋰離子電池正極材料加工性能和電池性能的角度出發,清華大學研究團隊提出了控制結晶制備高密度球形前驅體的技術,結合后續固相燒結工藝,提出了制備含鋰電極材料的產業技術。


其中,控制結晶方法制備前驅體,可以在晶胞結構、一次顆粒組成和形貌、二次顆粒粒度和形貌,以及顆粒表面化學四個層面對材料的性能進行調控和優化。利用該技術工藝生產的材料具有顆粒粒度及形貌易控制、均勻性好、批次一致性和穩定性好的特點,可以同時滿足電池關于材料電化學性能和加工性能的綜合要求。因材料的堆積密度高,尤其適用于高比能量電池。


該技術工藝適用于多種正極材料,并適合于大規模生產,隨著時間的推移,逐步被證明是鋰離子電池正極材料的最佳生產技術工藝,得到了現今產業界的普遍接受和認可。這也是我國科學工作者對國際鋰離子電池產業做出的重要貢獻之一。


鋰離子電池具有比能量高、儲能效率高和壽命長等優點,近年來逐步占據電動汽車、儲能系統以及移動電子設備的重要市場份額。從1990年日本Sony公司率先實現鋰離子電池商業化至今,負極材料一直是碳基材料,而正極材料則有了長足的發展,是推動鋰離子電池性能提升的最關鍵材料。


鋰離子電池正極材料的研究和發展,重要在三個方面進行:1)基礎科學層面,重要是發現新材料,或者對材料組成、晶體結構及缺陷結構的計算、設計和合成探索,以期發現電化學性能優異的新型正極材料;2)材料化學層面,重要探討合成技術,以期對材料晶體結構、取向、顆粒形貌、界面等材料結構因子進行優化,獲得電化學性能、加工性能和電池性能的最佳匹配,目的是研發可實現正極材料綜合性能最優化的材料結構及其合成方法;3)材料工程技術層面,重要是發展可大規模、低成本、穩定的設備和工藝,以期發展合理的工程技術,滿足市場需求。


鋰離子電池正極材料要在全電池中發揮最優良的性能,要在材料組成優化的前提下,進一步優化材料的晶體結構、顆粒結構和形貌、顆粒表面化學、材料堆積密度和壓實密度等物理化學性質,同時還要嚴防工藝過程引入微量金屬雜質。當然,穩定、高質量的大規模生產是材料在電池制造中性能穩定的重要的保障。隨著鋰電技術的日臻完善和鋰電市場的日趨成熟,不同正極材料的應用領域逐漸出現劃分,即鋰離子電池關于各種正極材料的性能要求也不盡相同。因而,正極材料的主流合成技術和工藝也經歷了不同的發展路徑。


1.鋰離子電池對正極材料的性能要求


(1)產業對鋰離子電池的性能要求


要理解正極材料的技術指標,要首先從電池的技術指標說起。鋰離子電池產業初期,重要服務于移動電子產品的發展,例如筆記本電腦、平板電腦、移動智能終端(手機)等。近年來,新能源產業和電動汽車產業迅速崛起,對鋰離子電池的需求急速上升,刺激鋰電產業加快了發展速度。因此,鋰離子電池需滿足諸多技術性能指標,才能被產業認可、得到進一步的發展。


這些技術指標中,最基本的有比能量、循環穩定性、比功率、成本、安全性可靠性、耐用性能、生產制造效率、可持續性等等,指標之間相互關聯,不同的應用領域對鋰離子電池指標的優先考慮順序是不同的。和便攜式電子產品中的鋰離子電池相比,儲能和電動汽車產業中應用的鋰離子電池的最大不同是單體電池的容量上升為十倍甚至幾十倍,同時電池模組的功能、結構及應用的復雜程度顯著提高,這對鋰離子電池的一致性、可靠性提出了更高的要求。


基于20多年的研究和工程實踐相關經驗,認為鋰離子電池的技術指標中最重要的是比能量和循環性能,其次是比功率、安全性、可靠性、成本和一致性等性能指標。比能量越高,單位能量(Wh)的材料成本就下降;循環壽命越長,電池的實際使用成本就低。目前移動智能終端用鋰離子電池要滿足比能量700Wh/L以上、循環性能200次以上的要求,而電動汽車用鋰離子電池要滿足比能量140Wh/kg(磷酸鐵鋰或者錳酸鋰正極材料)或200Wh/kg(層狀氧化物正極材料)以上、循環性能1500次以上的要求。鋰離子電池正極材料需滿足上述電池指標才可能被電池主流市場所接受。而目前鋰離子電池的比能量和循環性能重要取決于正極材料[1-6],因而鋰離子電池正極材料的重要研發目標就是高比能量、長循環壽命。


關于筆記本電腦、平板電腦、移動智能終端用鋰離子電池,體積比能量是最重要的指標,當然體積比能量高的電池,通常質量比能量也會高。因為客戶希望在特定體積的設備(例如手機)中放進更多的電池能量,目前石墨|鈷酸鋰體系的鋰離子電池產業化最成熟、同時高體積比能量也最高,其它材料體系的鋰離子電池很難撼動該體系鋰離子電池在移動電子產品行業的主導地位。安全性、可靠性和一定的循環性能對該類電池也很重要,由于重要以單體方式應用,電池的一致性和成本就不那么重要了。


關于電動汽車用鋰離子電池,盡管其對體積比能量的要求不像便攜式電子產品電池那樣苛刻,但畢竟乘用車的空間有限,車體重量會影響電動汽車的行駛里程,因此電池的質量比能量和體積比能量仍然是非常重要的。除此之外,車用鋰離子電池幾乎對其他所有性能的要求都近乎苛刻,遠遠高于便攜式電子產品電池的性能要求。其和便攜式電子產品電池最大的差別有三個。


一是電動汽車電源要較高的電壓和電流,要大量單體電池進行串并聯組合,這使得電池組實際可以利用的比能量不僅取決于單體電池的比能量,還取決于單體電池的一致性、特別是動態一致性,動力鋰電池的一致性近年來逐漸得到人們的關注[7]。二是單體電池的規模顯著增大,這使得單體電池的價格較高,熱失控造成的危害較為嚴重,因此市場對電池的安全性和可靠性較為敏感。三是由于電動汽車要10-15年的使用壽命,因此對循環性能的要求很高,一般要1500次以上。此外,由于電動汽車要啟動和加速,因此動力鋰電池比較功率也有一定的要求。


隨著電動汽車產業的迅速發展,動力鋰離子電池未來將和便攜式電子產品電池一并成為鋰電產業的主流產品。比能量和循環性能是鋰離子電池技術發展中永遠追求的最重要的性能指標,隨著安全性、可靠性、比功率和一致性等日益受到關注,該方面的技術有望獲得快速發展。要說明的是,隨著鋰離子電池逐漸滲入到國民經濟的各個領域,會有越來越多的非主流的鋰離子電池細分市場,其對電池的性能指標要求比較特殊,不在本文的討論范圍。


(2)滿足主流鋰離子電池產業需求的正極材料


當前,滿足鋰離子電池主流市場對電池性能要求的正極材料重要有層狀鈷酸鋰LiCoO2材料(LCO)、尖晶石錳酸鋰LiMn2O4材料(LMO)、橄欖石磷酸鐵鋰LiFepO4材料(LFp)、橄欖石磷酸錳鐵鋰LiMn0.8Fe0.2pO4材料(LMFp)、層狀三元材料LiNi1/3Mn1/3Co1/3O2材料(NMC333)、層狀三元材料LiNi0.4Mn0.4Co0.2O2(NMC442)、LiNi0.5Mn0.3Co0.2O2(NMC532)、LiNi0.6Mn0.2Co0.2O2(NMC622)、LiNi0.7Mn0.2Co0.1O2(NMC721)、LiNi0.8Mn0.1Co0.1O2(NMC811)和層狀高鎳材料LiNi0.8Co0.15Al0.05O2(NCA)等。從產業應用的角度,上述各材料因具有不同的物理化學特點,適合于不同應用領域的鋰離子電池,因而材料產品的關鍵性能指標也有所差異。


鈷酸鋰LiCoO2(LCO)材料是目前壓實密度最高的正極材料,因此所制備的鋰離子電池體積比能量最高,成為平板電腦和移動智能終端用鋰離子電池的重要正極材料。其缺點重要是鈷資源有限、成本高,限制了其在電動汽車領域的廣泛應用。該材料的結構和反應特性是隨著充電電壓的逐漸升高,鋰脫出量逐漸新增,LCO的可利用容量逐漸提高,但當鋰脫出量超過55%時(即相關于金屬鋰的充電電位為4.25V、相關于石墨|LCO全電池的充電電壓為4.2V),材料的結構穩定性迅速下降,壽命及安全性迅速變差。因此耐受較高充電電壓、同時化學穩定性滿足電池應用需求的LCO正極材料是當前材料制備技術的重要發展方向。


LCO結構穩定、合成較為容易,其制備技術簡單,也相對最為成熟。在2000年之前,LCO重要通過氧化鈷/碳酸鋰混合物的固相燒結技術進行生產,隨著人們關于產品堆積密度、比表改性等的極致追求,控制結晶制備鈷酸鋰前驅體的方法因具有材料形貌控制的優勢而逐漸成為重要的產業制備技術[8-11]。


尖晶石錳酸鋰LiMn2O4(LMO)材料的重要優點是原料資源豐富、成本低、電池安全性好;其公認的重要缺點是電池比能量低,同時循環穩定性欠佳。上世紀90年代開始,受其原料及工藝成本低、安全性好的吸引,人們探索了LMO在電動大巴、乘用轎車、特種車輛、電動工具等領域的應用。傳統的固相燒結制備技術無法實現對材料結構的調控,為了改善其循環穩定性及材料的振實密度,2004年作者團隊引入液相工藝制備前驅體[12-14],并進一步通過表面包覆、晶格摻雜、表面梯度化等技術提升材料性能[15-22]。但受限于材料溶解性高的特點,電池的循環穩定性一直未能很好得到滿足,只有進一步配合電解液,電池的壽命才能滿足需求。目前,LMO雖然已經很少用于車用動力鋰電池,但在對成本較為敏感的電動自行車等小型動力鋰電池行業得到了廣泛的應用。此外,隨著人們對車用大型動力鋰電池安全性的關注,和三元材料共混使用也成為LMO材料的重要用途之一。


橄欖石磷酸鐵鋰LiFepO4(LFp)材料的重要優點是原料資源豐富、成本低、電池安全性和循環性能好,其重要缺點是電池比能量低。該材料不僅在電動自行車、電動大巴、電動公交車、特種車行業得到了廣泛應用,而且在大規模儲能行業得到了廣泛的應用。由于該材料中鋰離子沿一維通道傳輸,因此材料具有顯著的各向異性、對缺陷結構異常敏感,要制備過程保障合成反應的高度均勻性和精確的Fe:p比例,才可能獲得較好的容量和倍率性能。基于材料結構和合成反應的復雜性,該材料的制備重要有兩個難題:


一是過程要還原氣氛,反應原料因種類、粒度不同而對還原氣氛具有不同的要求,局部還原性過高或者過低都會導致產品中存留雜質;二是材料要進行表面碳包覆或者和其他類型的導電劑進行復合,這使得材料的雜質和壓實密度很難控制。2005年作者所在課題組提出利用控制結晶技術制備高性能磷酸鐵前驅體(Fp),再和鋰源和碳源一起通過碳熱還原制備LFp[11]。


上述工藝路線經過進一步的改進成為了目前主流的磷酸鐵鋰材料制備技術[23-29]。為了滿足人們對LFp電池性能的不斷追求,高均勻性、高批次穩定性成為LFp正極材料最受關注的產品指標,而傳統的固相燒結技術一方面在原理上就難以實現高效的一致性控制,另一方面一致性控制會導致工藝成本的顯著提高。和固相工藝相比,基于液相工藝制備的前驅體或者基于水熱/溶劑熱制備的正極材料,具有較好的結構可調性和可控性[30],同時批次穩定性及反應均勻性好。類似于大化工裝置,持續溶劑熱工藝容易實現超大規模生產。因此液相技術逐漸成為下一代高品質LFp正極材料制備技術的發展趨勢[31-37]。


橄欖石磷酸錳鐵鋰LiMn0.8Fe0.2pO4(LMFp)材料是LFp材料的升級版,比能量比LFp高10%;由于Mn和Fe原料的反應動力學和對還原氣氛的要求存在差異,該材料的重要缺點是制備困難。目前基于固相法的產業制備工藝還不成熟,尚未得到大規模應用。假如LFp的液相制備技術獲得產業應用[38-41],則該類材料的制備難題有望迎刃而解。


三元材料的發展歷程是從本世紀初開始的。上世紀90年代后期,隨著LCO的大規模應用,受鈷資源的限制,人們希望用資源更為豐富的鎳來取代鈷。和LCO相比,LiNiO2材料(LNO)因資源豐富價格便宜,且具有更高的容量,曾被認為最有希望的鋰離子電池材料[42-46]。但LNO作為正極材料,也存在制備困難、材料結構不穩定、電池循環性能差等較難解決的問題。


為了解決LNO的結構穩定性和熱穩定性的問題,人們將鈷和錳摻雜進LNO的體相,最早的鎳鈷錳三元材料NCM應運而生[47,48]。為了提升材料的振實密度,2005年作者所在課題組提出利用控制結晶技術制備高密度球形氫氧化鎳鈷錳前驅體,再和鋰源一起混合燒結制備NCM333[11]。并在此基礎上進一步通過表面包覆、晶格摻雜、表面梯度化等技術提升材料性能[49-58]。


層狀三元材料LiNi1/3Mn1/3Co1/3O2(NMC333)在所有由Ni、Co、Mn過渡金屬元素組成的層狀氧化物正極材料中綜合性能最好,是目前乘用車動力鋰電池的重要正極材料。NMC333在充電到4.5V時比容量也很高。其重要缺點是鈷含量高,存在資源和成本的問題。


為了降低成本、提高容量,在NMC333的基礎上,人們不斷把鎳含量提高,研發出了一系列不同鎳含量的層狀三元材料。NMC442是由NMC333向NMC532和NMC622發展的過渡性產品,由于其綜合性能不如NMC333、NMC532和NMC622,生產及應用的規模比較有限。NMC532是當前應用較為廣泛的三元材料之一。由于三元過渡金屬中鎳比例低于等于50%時,材料的燒結氣氛是空氣,生產成本相對較低;而鎳比例高于等于60%時,燒結氣氛要氧氣或者氧氣/空氣混合氣體,生產成本相對較高。因此在空氣氣氛燒結的三元系列正極材料中,NMC532是鎳含量最高的,容量也最高,性價比好,目前有一定的市場份額。NMC622是一款綜合性能很好的正極材料,缺點是制備較難。隨著其制備工藝的日趨成熟,NMC622在乘用車動力鋰電池中的應用比例穩步上升,也是當前應用較為廣泛的三元材料之一。


NMC721的綜合性能不如NMC811和NMC622,是三元材料由NMC622向NMC811發展過程中的過渡產品,沒有得到很大的發展。NMC811和NCA,這兩種材料的重要優點是比容量高,同時鎳資源比鈷豐富、成本比鈷低,原料資源受限的問題相對較小。缺點是材料制備難度大,對水份非常敏感,電池制備的條件和技術門檻高。NCA目前已經開始規模應用在電動汽車產業中,而NMC811則被公認為是比能量超過300Wh/kg鋰離子電池的重要選擇之一。


上述材料的各項性能指標均能夠滿足車用鋰離子電池對正極材料的性能要求和電池制造技術工藝對材料加工性能的基礎要求,是目前已經或者有望得到產業應用的重要的鋰離子電池正極材料。


2.制備高性能正極材料的要求


隨著人們對材料物理化學研究的不斷深入和材料制備技術的不斷發展,人們發現,高性能的正極材料要從材料的晶胞結構、一次顆粒晶體結構、二次顆粒結構、材料表面化學四個方面進行剪裁,以及材料大規模生產工藝技術方面進行工藝過程優化,才可以使得材料表現出更為優異的性能,更好地滿足鋰離子電池產業對正極材料的各項要求。


清華大學核能和新能源技術研究院鋰離子電池實驗室從上個世紀的九十年代初開始了二次電池高性能電極材料的研發。在高活性、高密度球形氫氧化亞鎳Ni(OH)2鎳氫電池用正極材料及其制備技術的研發過程中,形成了以控制結晶為特色的電極材料制備新技術工藝[59-71]。該技術工藝容易實現對晶胞結構、一次顆粒晶體結構、二次顆粒結構以及材料表面化學四個層面的結構調控,優化正極材料的各項性能以滿足電極及電池對正極材料的要求。上述四個層面對材料性能的貢獻是不同的:


第一層面,晶胞結構,即組成晶體的基本單元晶胞結構,重要通過摻雜而實現調控,達到優化材料的能級結構/離子傳輸通道的目的,從而提升材料電子電導率/離子電導率或者結構穩定性,進而提升材料的倍率性能和循環性能等。


第二層面,一次顆粒的晶體形貌。通過控制合成條件改變晶體的優勢生長方向、晶粒大小、晶粒堆積方式。這一層面的優化可以優化電化學活性/惰性界面的面積、應力釋放路徑、鋰離子擴散路徑,從而提升電池的倍率性能、循環穩定性和能量密度等。


第三層面,二次顆粒結構。二次顆粒是一次顆粒相互融合堆積形成的顆粒。可以通過合成條件改變一次顆粒的堆積密度、二次顆粒的形貌、二次顆粒的大小及分布。這一層面的優化可以獲得最佳的材料加工性能、極片壓實密度,顆粒力學強度,從而提升電池的能量密度等。


第四層面,材料的表面化學。重要指表面包覆和表面元素濃度的梯度化。材料表面化學的優化可以大幅度提升材料的性能。


在實踐中,上述四個層面相互關聯、互相影響。例如,很好的形貌控制非常有利于表面化學的改進。


本實驗室在上世紀九十年代對鎳氫電池正極材料球形氫氧化亞鎳進行系統研發時所形成的學術成果[59-69],為隨后研發高性能鋰離子電池電極材料奠定了堅實的理論和實踐基礎,開創了嶄新的研究領域[11,70,71]。


在電動汽車和儲能領域,要求電池具有很好的一致性和可靠性。據此,對正極材料規模化生產的穩定性提出了新的要求,正極材料產業迫切需求先進的材料規模制備技術[72]。


3.控制結晶/固相反應工藝制備高性能正極材料


2006年以前,已經實現大規模生產的鋰離子電池正極材料只有鈷酸鋰LiCoO2和錳酸鋰LiMn2O4,采用成熟的陶瓷工業合成技術--高溫固相法,基本工藝是將反應物混合后進行燒結。該技術工藝的優勢是設備成熟、技術工藝簡單,最大缺點是產物的粒徑分布不易控制,均勻性、一致性和重現性較差[73]。


本實驗室基于高密度球形氫氧化亞鎳的技術成果,從上世紀90年代末期開始,研發了獨特的控制結晶/固相反應新工藝[8-11,70,71],該新工藝以控制結晶制備前驅體為技術核心,從四個層面對材料結構其性能進行優化。由于該工藝技術所制備材料具有球形或類球形形貌、堆積密度高,加工性能好、可提高電池的能量密度,顯示了優異的綜合性能,控制結晶/固相反應工藝為今天產業界所普遍接受。


1999年,本實驗室首次報道了以Co(OH)2為前驅體制備球形LiCoO2正極材料[8]。由于Co(OH)2和LiCoO2的結構相似,因此固相反應的溫度低、燒結時間短,可獲得均勻無雜相的NaFeO2層狀結構的LiCoO2粉末。同時,可以借鑒優化Ni(OH)2的工藝技術來優化Co(OH)2前驅體,從而得到流動性好、分散性好、堆積密度高的LiCoO2粉體。隨后,這些學術思想被用來制備一系列的正極材料,逐步發展成為今天的鋰離子電池正極材料的重要生產工藝路線,即控制結晶/固相反應工藝。


2001年,本實驗室首次發表了以球形Ni0.8Co0.2(OH)2為前驅體制備高鎳正極材料LiNi0.8Co0.2O2的文章,同時進行表面改性和Al摻雜改性。Al摻雜演變成為今天的NCA材料。


2003年,本實驗室首次發表以控制結晶技術制備尖晶石錳酸鋰的工藝技術,繼而首次提出通過表面富鈷的"梯度材料"來改善尖晶石錳酸鋰的高溫循環穩定性,并基于控制結晶技術對尖晶石錳酸鋰進行了進一步的改性研究。這些研究表明,控制結晶技術不僅在均質材料制備方面具有較好的可控性,在材料表面包覆、特別是梯度包覆方面也具有工藝簡單、易于控制的優點。


磷酸鐵鋰因為本征電子和離子電導率較低,只有納米化后才能獲得可用的電化學性能,但納米顆粒堆積和壓實密度低,這嚴重影響了磷酸鐵鋰離子電池的能量密度。2005年,本實驗室提出以控制結晶技術制備球形FepO4前驅體,然后混合鋰源和碳源,通過碳熱還原合成高性能高密度LiFepO4的合成路線。


其中液相法可以很好的控制前驅體的Fe:p比例,可同時實現納米一次顆粒和高密度球性二次顆粒的調控,并同步實現導電碳在二次顆粒中的均勻復合,雖然仍然通過固相燒結獲得最終的磷酸鐵鋰產品,但均勻、高密度、批次穩定、粒度可控、組成精確可控的前驅體使得磷酸鐵鋰正極材料的均勻性和批次穩定性大大提高、雜質含量顯著降低。上述學術思想逐漸被產業界認可,成為了今天大規模生產LFp的基本工藝路線。


2005年開始,本實驗室報道了采用控制結晶/固相反應技術制備高性能NMC333正極材料。并進一步對NMC333正極材料進行了包覆、摻雜等的改性研究。


目前動力鋰離子電池產業所要的主流正極材料均采用控制結晶/固相反應工藝進行生產。尤其是大規模儲能及電動汽車電池用的磷酸鐵鋰材料和各種組成的三元材料的合成,控制結晶/固相反應工藝具有不可替代的優越性。其可根據不同電池的需求,針對性地對前驅體進行改性和調控。同時產品也容易實現良好的均勻性和一致性,這一點對動力鋰電池的穩定生產、尤其是動力鋰電池的一致性至關重要。


控制結晶/固相反應技術經過十多年的發展,目前已經成為了國際上正極材料行業的主流生產技術工藝。這是我國科學工作者對鋰離子電池產業做出的重要貢獻。


4.鋰離子電池材料的規模化生產技術


隨著大規模儲能和電動汽車的快速發展,對鋰離子電池正極材料的產品質量提出了越來越嚴格的要求。為滿足市場對正極材料的高品質要求,自動化、智能化的大規模生產技術和裝備技術就顯得越來越重要。


在過去的十五年里,控制結晶/固相反應技術工藝日臻完善。然而,我國還是一個發展我國家,大量設備陳舊、生產工藝僵化的現象普遍存在,尤其是中小公司。國家整體工業化的水平還處在工業2.0和工業3.0的階段,距發達國家的工業4.0的信息化、智能化的工業生產技術水平還有一段距離,這已成為阻礙我國制造業效率和品質進一步提升的重要問題。這個現象也同樣存在于鋰離子電池正極材料生產公司中。因此我國鋰離子電池正極材料的生產工藝、設備管理水平急需轉型升級,利用信息技術提升、改善、重構生產要素,提高公司組織管理水平,創新生產方式,提升資產質量和服務功能,適應市場的迅速發展和變化。


2000年左右,鋰離子電池正極材料的新建項目一般是200-500噸的產量規模。2010年左右,一般是2000噸的產量規模。目前新建項目一般是一期5000—2000噸,規劃50000噸以上。隨著產量規模的不斷放大,對廠的設計布局和運行管理提出了新的挑戰。為了滿足電動汽車和儲能產業對電極材料的高品質和大規模的需求,逐步發展了基于粉體自動輸送的信息化、自動化和智能化的大規模生產技術[72]。


目前國內部分公司已經開始逐步采用先進的大規模生產技術。重要包括粉體自動輸送、自動計量、自動化生產和智能控制,信息化遠程實時監控,以及先進的制造執行系統等。


以控制結晶制備磷酸鐵前驅體/碳熱還原固相反應為基礎的磷酸鐵鋰制備工藝已經被產業逐步接受,并成為目前的主流工藝路線。下一步溶劑熱方法制備高性能磷酸鐵鋰有可能成為新的超大規模生產方法,以滿足未來大規模固定儲能的需求。


在三元材料中,NMC333的綜合性能最好,NMC532的性價比較好,NMC811/NCA在4.2V的比容量最高。因此,這些材料在一按時期內,將得到較大的發展,以滿足未來大規模移動儲能(例如電動汽車)的需求。


鋰離子電池正極材料的生產技術經歷來二十多年的發展,其主流工藝逐步集中在以控制結晶/固相反應工藝為基礎的技術路線。該技術路線以控制結晶制備前驅體為技術核心,可以在材料的四個層面對其性能進行優化。該技術路線所制備材料具有顆粒形貌易控制,均勻性、一致性和重現性好的特點。且材料的堆積密度高,可提高電池的能量密度。由于該技術路線所制備材料具有相對最好的綜合性能,因此控制結晶/固相反應技術路線為今天產業界所普遍接受。


為了滿足電動汽車和儲能產業對電極材料的高品質和大規模的需求,基于工業4.0的概念,我國已經發展了包括粉體自動輸送的信息化、自動化和智能化的大規模生產技術。


固定儲能和移動儲能產業的快速發展,拉動了鋰離子電池正極材料的技術進步。在正極材料制備技術的發展過程中,以前側重單元技術工藝的研發,重要通過材料的結構調控來優化材料加工性能和電化學性能。而未來的大規模智能制造,一方面仍然要關注單元技術工藝的可規模性,更要關注單元技術工藝之間的反饋和聯動效率,從而提高大規模制造過程的能效,提高產品穩定性。


在這一技術發展的早期階段,我國科研工作者做出了不可或缺的創新性貢獻。目前我國已經成為鋰離子電池正極材料的最大生產國,占比超過50%。研發力量規模也是全球最大,我們相信在未來的大規模智能制造階段,我國科學工作者在新工藝、新設備、智能化等方面也將做出重要貢獻。


相關產品

野花大全在线观看免费高清| 老熟女重囗味HDXX70星空| 久久99精品国产麻豆蜜芽| 欧美性饥渴少妇XXXⅩOOOO| 午夜一区欧美二区高清三区| 97无码免费人妻超级碰碰夜夜| 国产成人无码综合亚洲日韩| 老熟妇BBWASS| 无码成人AⅤ免费中文字幕| 中国JAPANESE高潮尖叫| 国产精品无码久久久久| 免费观看电视剧全集在线播放 | 久久影院午夜伦手机不四虎卡| 日韩一区无码视频| 亚洲中文字幕无码中文| 寡妇被下药和大狼拘| 么公的粗大挺进了我的密道| 小浪蹄子蜜水噗呲噗呲的| CHINA中国人CHINESE| 精品国精品国产自在久国产应用| 日本熟妇在线一区二区三区| 亚洲综合精品香蕉久久网| 国产成人午夜在线视频A站 | 在线天堂中文最新版WWW下载| 国产精品久久久久久久久爆乳 | 无码国产精品一区二区免费VR| 23部禽女乱小说内| 好男人资源在线观看好| 色妞AV永久一区二区国产AV开| 在线观看ww亚洲精品| 国产一二三四区乱码免费| 日产精品99久久久久久| 在办公室把护士给爽了动态图| 国产乱人伦AV在线A麻豆| 日本人妻丰满熟妇久久久久久| 一出一进一爽一粗一大视频免费的| 国产精品无码电影在线观看| 人妻少妇中文字幕| 呦系列视频一区二区三区| 国内精品久久久久影院一蜜桃| 日韩乱妇乱女熟妇熟女AV| √新版天堂资源在线资源| 精品久久久久久久免费人妻| 偷欧洲亚洲另类图片AV天堂| xxxxxx日本黄色| 美女下部裸体张开腿视频| 亚洲成A∨人片在线观看不卡| 丰满人妻被公侵犯日本| 欧美激情综合色综合啪啪五月| 亚洲午夜久久久久久噜噜噜| 国产清纯美女爆白浆视频| 肉欲麻豆天美传媒| ASS鲜嫩鲜嫩PICS日本| 久久婷婷五月综合色国产免费观看| 亚洲 熟 图片 小说 乱 妇| 公和熄小婷乱中文字幕| 人妻妺妺窝人体色WWW聚色窝| 中文字幕乱理片人妻无码888| 精品露脸国产偷人在视频 | 久久综合精品国产丝袜长腿| 亚洲AV无码成人精品区伊人小说| 丰满少妇爆乳无码专区| 欧美人妻少妇精品久久黑人| 正在播放强揉爆乳女教师| 精品无码久久久久久久动漫| 亚州日本乱码一区二区三区| 国产VA在线观看免费| 日本免费AⅤ欧美在线观看| 99久久99精品久久久久久| 老湿机香蕉久久久久久| 亚洲视频在线观看| 含羞草传媒免费进入APP老版本| 无码精品人妻 中文字幕| 公的大龟慢慢挺进我的体内 | 按摩师的巨大滑进我的身体 | 中文字幕丰满乱子无码视频| 久久久久99精品成人片| 亚洲AV元码天堂一区二区三区| 国产精品高潮呻吟久久AV| 少妇侧入内射一区二区| 成人动漫在线观看| 人妻人人添人人爽夜夜欢视频| 99RE6在线视频精品免费下载| 麻豆我精产国品一二三产区区别| 亚洲一区二区三区橡胶防水| 精品久久久久久亚洲综合网 | エロドラえもんCOM中文在线| 女人被弄到高潮的免费视频| 中文字幕无码肉感爆乳在线| 乱人伦人成品精国产在线| 一二三四免费BD高清视频 | 精品熟女少妇AⅤ免费久久| 亚洲VA天堂VA在线VA欧美| 国内大量揄拍人妻在线视频| 无人高清影视在线观看| 国产精华液一线二线三线区别| 熟妇毛耸耸浓密茂盛| 国产99久久久国产精品~~牛| 少妇粉嫩小泬喷水视频在线观看| 初小VIDEOS第一次摘花| 日日噜噜夜夜狠狠久久蜜桃| 吃奶呻吟打开双腿做受是免费视频| 人人插人人操人人射av网| 被部长灌醉后强行侵犯| 日本老熟妇ⅩXX| 成人区人妻精品一区二区网站| 日本适合18岁以上的护肤品| 草莓视频在线播放视频| 日日碰狠狠添天天爽超碰97| 公交车后车座疯狂的做的细节| 色偷偷亚洲女人的天堂 | 久久人人爽人人爽人人AV| 亚洲中文字幕无码久久2017| 久久婷婷国产剧情内射白浆| 在线V观看免费国岛国片| 蜜桃AV无码免费看永久| 777琪琪午夜理论电影网| 欧美精品人妻AⅤ在线观视频免费| AV狠狠色丁香婷婷综合久久| 强开小婷嫩苞又嫩又紧视频| 差差差30分钟视频轮滑免费| 十八禁乳露裸体奶头WWW网站 | 丝袜灬啊灬快灬高潮了AV| 国产精品99无码一区二蜜桃| 性饥渴少妇AV无码毛片| 饥渴老熟妇乱子伦视频| 亚洲最大无码成人网站4438| 免费女人18毛片A毛片视频| FREE性中国熟女HD交换| 日韩一中文字无码不卡| 国产精品女同久久久久电影院| 亚洲AV无码国产精品色| 久久精品成人无码观看不卡| 中文无码日韩欧免费视频APP| 欧美虐SM另类残忍视频| 成熟人妻视频一区区三区| 我的妺妺H伦浴室无码视频| 国产在线成人一区二区三区| 亚洲日韩精品欧美一区二区| 美女爆乳裸体WWW免费网站| WC女厕撒尿七Ⅴ偷拍| 视频一区二区三区在线观看密桃| 国产午夜免费啪视频观看视频| 亚洲色欲色欲大片WWW无码 | 幼儿HIPHOP仙踪林的| 男女嘿咻激烈爱爱动态图| V与子敌伦刺激对白播放| 色婷婷在线精品国自产拍| 国产精品一线二线三线有什么区别 | 与亲女洗澡伦了东北| 欧美人与物VIDEOS另类| 丰满少妇张开双腿无码AV | 果冻传媒亚洲区二期| 亚洲欧美另类在线观看| 免费高清播放A级毛片完整版 | 全部AV―极品视觉盛宴| 国产97在线 | 中文| 亚洲AV自慰白浆喷水少妇| 浪潮国产AV一区二区熟女| а√在线官网在线| 无码中文亚洲AV吉吉影音先锋 | 大学生酒店呻吟在线观看| 羞羞漫画十八禁啪啪漫画免费| 久久久久亚洲AV无码专区喷水| 野草高清视频免费| 豪妇荡乳1一5潘金莲2在线| 亚洲尤码不卡AV麻豆| 欧美丰满熟妇XXXXX高潮| 丰满护士巨好爽好大乳小说| 亚洲AV无码一区二区三区天堂| 撅高屁股乖乖被学长CAO男男| 啊灬用力灬啊灬啊灬啊灬| 无码人妻一区二区三区免费看成人| 久久18禁高潮出水呻吟娇喘| AV 日韩 人妻 黑人 综合| 他的舌头探入蜜源毛毛虫说说| 精品人妻一区二区三区乱码| 99久久国产综合精品女| 忘忧草视频在线观看| 久久久久久精品人妻免费网站| А√中文在线资源库| 性色AV一区二区三区夜夜嗨| 久久夜色精品国产噜噜| 旧里番YY6080在线播放| 凹凸人妻人人澡人人添| 压在窗户上C给别人看窗前| 看全色黄大色大片免费无码| 厨房掀开馊了裙子挺进电影| 亚洲成AV人片一区二区三区| 女人扒开屁股桶爽30分钟 | 皇上捏住宫女的巨峰| 最新69国产成人精品视频免费| 少妇人妻偷人精品视频| 九月婷婷亚洲综合成人| 凹凸在线无码免费视频| 亚洲S久久久久一区二区| 欧美三级三级三级爽爽爽| 国产亚洲欧美日韩亚洲中文色| 97SE亚洲国产综合自在线尤物| 无码人妻精品中文字幕不卡|